Candidate	Centre	Candidate	
Name	Number	Number	
		2	

GCE AS/A level

1092/01

CHEMISTRY CH2

P.M. FRIDAY, 27 May 2011 $1\frac{1}{2}$ hours

FOR EXAMINER'S USE ONLY				
Section	Question	Mark		
A	1-6			
В	7			
	8			
	9			
	10			
11				
TOTAL	MARK			

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- Data Sheet containing a Periodic Table supplied by WJEC. Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication used in all written answers.

Page 16 may be used for rough work.

SECTION A

Answer all questions in the spaces provided.

	calcium carbonate		
	magnesium hydro	xide	
	sodium carbonate		
Fror	m the list above, choose the	compound that	
(a)	gives a brick-red flame te	st,	[
(b)Com		show the type or types of bonding present in the fo	[] llowir [2
Com	aplete the table below to s		llowir
Com	nplete the table below to s	show the type or types of bonding present in the fo	llowir

PMT

5. In recent years scientists have developed a range of materials known as smart materials. State what is meant by a *smart material*.

(1092-01)

Turn over.

[1]

Examiner only

6. The compound below has a cherry odour and is used in the manufacture of fragrance agents.

$$CH_3CH_2$$
 CH_2OH $C=C$ H

(a)	Name the functional groups present in this compound.	[2]
(b)	State the molecular formula of the compound.	[1]

Section A Total [10]

<u>P</u>MT

BLANK PAGE

SECTION B

Answer all questions in the spaces provided.

(a) 	Explain what is meant by a <i>saturated</i> hydrocarbon.	
(b)	Propane and heptane, C_7H_{16} , are two of the hydrocarbons obtained from petro	oleum.
	(i) Write a balanced equation for the complete combustion of propane.	[2
	(ii) 3-Ethylpentane is a structural isomer of C_7H_{16} . Draw the skeletal formula of this isomer.	[:
(c)	Name and briefly describe the process by which ethene is produced from a perfraction.	etroleu [

PMT

<i>(d)</i>	Describe the structure of and bonding in an ethene molecule. You may use a diagram in your answer.	[3] QWC [1]
(e)	Name the type of reaction mechanism occurring when ethene reacts with bromine and draw the displayed formula of the product formed. Type of reaction mechanism	n aqueous [2]
(f)	Ethene can be used as the starting material in the industrial preparation of The conditions for the reaction are a temperature of 300 °C and a pressure of 60-70 atm.	of ethanol.
(g)	Name the catalyst used in this reaction. Another way to prepare ethanol is by the fermentation of glucose. $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$	[1]
	Calculate the minimum mass of glucose required to give 230 g of ethanol.	[3]

Total [16]

(1092-01)

Turn over.

(a)	Chloroalkanes such as 1-chlorobutane are used in the synthesis of compounds.	
	1-Chlorobutane can be formed from butane and chlorine in a simil formation of chloromethane from methane and chlorine.	ar way to the
	Describe the reaction of butane and chlorine to form 1-chlorobutane.	
	 Your description should include: an overall equation for the reaction; the conditions required for the reaction to take place; full details of the reaction mechanism. 	[6] QWC [1]
(b)	Give the equation for the reaction between 1-chlorobutane and aq	
(b)	hydroxide and name the type of reaction mechanism occurring.	ueous sodium
(b)		

Examiner only

(d) Chlorofluorocarbons were used at one time as refrigerants in air-conditioning systems in cars and buildings. However, due to leakage over time, their use for this purpose is being phased out.
 State the environmental consequence of leakage of chlorofluorocarbons. [1]

Total [13]

- **9.** Ethanoic acid, CH₃COOH, commonly known as acetic acid, is an organic acid that gives vinegar its sour taste and pungent smell.
 - (a) Ethanoic acid contains C—O, C=O and O—H bonds and has the infrared spectrum shown below. Using the Data Sheet, label the characteristic absorptions for **each** of these **three** bonds on the spectrum. [2]

(b) The mass spectrum of ethanoic acid is shown below.

Ex	xplain how this shows that the formula for ethanoic acid is CH ₃ CC	OOH. [2]

PMT

- The crystal structure of ethanoic acid shows that the molecules are found in pairs with hydrogen bonds between each pair.
 - Complete the diagram to show how two molecules of CH₃COOH can join together through hydrogen bonding.

$$H_3C-C$$
 $O-H$

Describe what is meant by *hydrogen bonding*. (d)Ethanoic acid can be formed from the oxidation of ethanol by potassium dichromate(VI). State the conditions required for this reaction to take place. [1] State what you would observe during the reaction. [1] (ii)The boiling temperature of ethanol is 78 °C. Giving a reason in **both** cases, state how you would expect the boiling temperatures of the following compounds to differ from that of ethanol.

10.	Beca	Because of its many uses, over 100 million tonnes of ammonia are manufactured each year						
	(a)		s of ammonia is in the produce of ammonia and air is pass	ction of nitric acid. In the first ged over a catalyst at 850 °C.	part of			
		NH ₃ (g) +	$O_2(g)$ \longrightarrow	NO(g) +	H ₂ O(g)			
		(i) Balance the eq	uation above.		[1]			
				tion states (numbers) of each e ies has been oxidised in this reac				
		Element	Initial oxidation state	Final oxidation state				
		nitrogen						
		hydrogen						
		oxygen						
		(iii) Explain in ter BF ₃ , have diffe		mmonia, NH_3 , and boron trifle	uoride,			

<i>(b)</i>	A significant amount of ammonia is also used as a general purpose cleaner for many household surfaces.
	Household ammonia is an alkaline solution formed by mixing ammonia with water.

$$NH_3(g) + H_2O(l) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

(i)	The ammonium term.	ion shows	s coordinate	bonding.	Explain	what is	meant	by this [1]

(ii) Using outer electrons only, draw a dot and cross diagram to show the bonding in an ammonium ion. Include the charge on the ion. [2]

- (iii) State the shape of an ammonium ion and the bond angle present. [2]

 Shape

 Bond angle
- (iv) Another compound that contains ammonium ions is ammonium chloride, NH_4Cl . Like sodium chloride it is an ionic compound.

Explain why it is soluble in water. [2]

You may use a diagram in your answer.

Total [14]

(a)		ne first experiment, he ignites potassium and puts it in a gas jar containing oxygeorm potassium oxide.
	(i)	State what he would see as the reaction proceeds.
	(ii)	Write a balanced equation for the reaction.
	(iii)	He repeats the experiment with rubidium. State whether you would expect rubidium to be more reactive or less reactive than potassium. Give a reason for your answer.
<i>(b)</i>	In th	ne second experiment, Dr Ballard reacts sodium with water at room temperature. $2\text{Na(s)} + 2\text{H}_2\text{O(l)} \longrightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$
	(i)	If the mass of sodium is 0.098 g, calculate the number of moles of sodium used the experiment.
	(ii)	Calculate the volume of hydrogen produced in this reaction at room temperature (1 mole of gas occupies 24.0 dm ³ at room temperature)
	(iii)	If the volume of water used was 200 cm ³ calculate the concentration, in moldm ⁻³ , of the sodium hydroxide solution formed.

°801°C. m chloride.	[1]
n chloride.	[1]
erature is high.	[2]
Total	[14]
	Total Section B Total

Rough Work

(1092-01)	 	 	

GCE AS/A level

CHEMISTRY CH2 DATA SHEET

P.M. FRIDAY, 27 May 2011

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm ⁻¹
C—Br	500 to 600
C—Cl	650 to 800
С—О	1000 to 1300
C = C	1620 to 1670
C=O	1650 to 1750
$C \equiv N$	2100 to 2250
С—Н	2800 to 3100
О—Н	2500 to 3550
N—H	3300 to 3500

THE PERIODIC TABLE

								THE LEWISDIC			-1							
	1	7						5	Group				e	4	w	9	7	0
Period	s Block	ock															L	
V —									Key									4.00 He
_	101 H								,									Helium 2
	Hydrogen 1							A _r	relative atomic	ive		, ,			p Block	ock	-	
7	6.94 Li Lithium 3	9.01 Be Beryllium						Symbol Name Z					10.8 B Boron 5	12.0 C Carbon 6	14.0 Nitrogen	16.0 O Oxygen 8	19.0 F Fluorine	20.2 Neon
В	23.0 Na Sodium	24.3 Mg Magnesium					d Block	ock					27.0 Al Aluminium 13	Silicon	31.0 P	32.1 S Sulfur 16	35.5 CI Chlorine	40.0 Ar Argon 18
4	39.1 K Potassium	40.1 Ca Calcium	45.0 Sc Scandium	47.9 Ti Titanium	50.9 V Vanadium 23	52.0 Cr Chromium	54.9 Mn Manganese	55.8 Fe Iron	58.9 Co Cobalt	S8.7 Nickel	63.5 Cu Copper	65.4 Zn Zinc	Е	72.6 Germanium	74.9 As Arsenic	79.0 Se Selenium	79.9 Bromine	83.8 Kr Krypton
v	85.5 Rb Rubidium	87.6 Sr Strontium	88.9 Y Yttrium 39	91.2 Zr Zirconium	ш	95.9 Mo Molybdenum 42	Tech	Ruthenium	Rhodium 45	106 Pd Palladium 46	Ag Silver	112 Cd Cadmium 48	Information Inform	Sn Tin 50	Sb Antimony 51	128 Te Tellurium	127 I Iodine 53	Xe Xenon 54
9	133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum	Hf Hafmium	181 Ta Tantalum	184 W Tungsten	186 Re Rhenium	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T1 Thallium 81	207 Pb Lead 82	209 Bismuth 83	(210) Po Polonium 84	(210) At Astatine 85	(222) Radon 86
	(223) Fr Francium 87	(226) Ra Radium 88	(227) Ac Actinium 89															
			'							f Bl	f Block							
		►Lar ele	► Lanthanoid elements	140 Ce Cerium 58	141	Neodymium 60	(147) Pm Promethium 61	Sm Samarium 62	(153) Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	163 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71	
		► Actinoid elements	Actinoid elements	Th Thorium	Pa Protactinium	238 U Uranium 92	(237) Np Neptunium 93	Pu Putonium	(243) Am Americium 95	(247) Cm Curium 96	(245) Bk Berkelium 97	(251) (254) Cf Es Californium Einsteinium 98 99	(254) Es Einsteinium 99	(253) Fm Fermium	(256) Md Mendelevium 101	(254) No Nobelium 102	(257) Lr Lawrencium 103	