| Candidate | Centre | Candidate | | |-----------|--------|-----------|--| | Name | Number | Number | | | | | 2 | | # GCE AS/A level 1092/01 # **CHEMISTRY CH2** P.M. FRIDAY, 27 May 2011 $1\frac{1}{2}$ hours | FOR EXAMINER'S
USE ONLY | | | | | |----------------------------|----------|------|--|--| | Section | Question | Mark | | | | A | 1-6 | | | | | В | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | 11 | | | | | | TOTAL | MARK | | | | ### ADDITIONAL MATERIALS In addition to this examination paper, you will need a: - calculator; - Data Sheet containing a Periodic Table supplied by WJEC. Refer to it for any relative atomic masses you require. # INSTRUCTIONS TO CANDIDATES Use black ink or black ball-point pen. Write your name, centre number and candidate number in the spaces at the top of this page. **Section A** Answer all questions in the spaces provided. **Section B** Answer all questions in the spaces provided. Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**. ## INFORMATION FOR CANDIDATES The number of marks is given in brackets at the end of each question or part-question. The maximum mark for this paper is 80. Your answers must be relevant and must make full use of the information given to be awarded full marks for a question. You are reminded that marking will take into account the Quality of Written Communication used in all written answers. Page 16 may be used for rough work. # **SECTION A** Answer all questions in the spaces provided. | | calcium carbonate | | | |--------|------------------------------|---|--------------------| | | magnesium hydro | xide | | | | sodium carbonate | | | | Fror | m the list above, choose the | compound that | | | (a) | gives a brick-red flame te | st, | [| | | | | | | (b)Com | | show the type or types of bonding present in the fo | []
llowir
[2 | | Com | aplete the table below to s | | llowir | | Com | nplete the table below to s | show the type or types of bonding present in the fo | llowir | PMT **5.** In recent years scientists have developed a range of materials known as smart materials. State what is meant by a *smart material*. (1092-01) Turn over. [1] Examiner only **6.** The compound below has a cherry odour and is used in the manufacture of fragrance agents. $$CH_3CH_2$$ CH_2OH $C=C$ H | (a) | Name the functional groups present in this compound. | [2] | |-----|--|-----| | (b) | State the molecular formula of the compound. | [1] | | | | | Section A Total [10] <u>P</u>MT # **BLANK PAGE** # **SECTION B** Answer all questions in the spaces provided. | (a)
 | Explain what is meant by a <i>saturated</i> hydrocarbon. | | |---------|--|--------------| | (b) | Propane and heptane, C_7H_{16} , are two of the hydrocarbons obtained from petro | oleum. | | | (i) Write a balanced equation for the complete combustion of propane. | [2 | | | (ii) 3-Ethylpentane is a structural isomer of C_7H_{16} . Draw the skeletal formula of this isomer. | [: | | (c) | Name and briefly describe the process by which ethene is produced from a perfraction. | etroleu
[| | | | | | | | | | | | | | | | | PMT | <i>(d)</i> | Describe the structure of and bonding in an ethene molecule. You may use a diagram in your answer. | [3]
QWC [1] | |------------|---|----------------| | (e) | Name the type of reaction mechanism occurring when ethene reacts with bromine and draw the displayed formula of the product formed. Type of reaction mechanism | n aqueous [2] | | (f) | Ethene can be used as the starting material in the industrial preparation of The conditions for the reaction are a temperature of 300 °C and a pressure of 60-70 atm. | of ethanol. | | (g) | Name the catalyst used in this reaction. Another way to prepare ethanol is by the fermentation of glucose. $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$ | [1] | | | Calculate the minimum mass of glucose required to give 230 g of ethanol. | [3] | Total [16] (1092-01) Turn over. | (a) | Chloroalkanes such as 1-chlorobutane are used in the synthesis of compounds. | | |-----|---|----------------| | | 1-Chlorobutane can be formed from butane and chlorine in a simil formation of chloromethane from methane and chlorine. | ar way to the | | | Describe the reaction of butane and chlorine to form 1-chlorobutane. | | | | Your description should include: an overall equation for the reaction; the conditions required for the reaction to take place; full details of the reaction mechanism. | [6]
QWC [1] | | | | | | | | | | | | | | | | | | (b) | Give the equation for the reaction between 1-chlorobutane and aq | | | (b) | hydroxide and name the type of reaction mechanism occurring. | ueous sodium | | (b) | | | Examiner only (d) Chlorofluorocarbons were used at one time as refrigerants in air-conditioning systems in cars and buildings. However, due to leakage over time, their use for this purpose is being phased out. State the environmental consequence of leakage of chlorofluorocarbons. [1] Total [13] - **9.** Ethanoic acid, CH₃COOH, commonly known as acetic acid, is an organic acid that gives vinegar its sour taste and pungent smell. - (a) Ethanoic acid contains C—O, C=O and O—H bonds and has the infrared spectrum shown below. Using the Data Sheet, label the characteristic absorptions for **each** of these **three** bonds on the spectrum. [2] (b) The mass spectrum of ethanoic acid is shown below. | Ex | xplain how this shows that the formula for ethanoic acid is CH ₃ CC | OOH. [2] | |----|--|----------| | | | | | | | | | | | | **PMT** - The crystal structure of ethanoic acid shows that the molecules are found in pairs with hydrogen bonds between each pair. - Complete the diagram to show how two molecules of CH₃COOH can join together through hydrogen bonding. $$H_3C-C$$ $O-H$ Describe what is meant by *hydrogen bonding*. (d)Ethanoic acid can be formed from the oxidation of ethanol by potassium dichromate(VI). State the conditions required for this reaction to take place. [1] State what you would observe during the reaction. [1] (ii)The boiling temperature of ethanol is 78 °C. Giving a reason in **both** cases, state how you would expect the boiling temperatures of the following compounds to differ from that of ethanol. | 10. | Beca | Because of its many uses, over 100 million tonnes of ammonia are manufactured each year | | | | | | | |-----|------|---|---|---|---------------------|--|--|--| | | (a) | | s of ammonia is in the produce of ammonia and air is pass | ction of nitric acid. In the first ged over a catalyst at 850 °C. | part of | | | | | | | NH ₃ (g) + | $O_2(g)$ \longrightarrow | NO(g) + | H ₂ O(g) | | | | | | | (i) Balance the eq | uation above. | | [1] | | | | | | | | | tion states (numbers) of each e
ies has been oxidised in this reac | | | | | | | | Element | Initial oxidation state | Final oxidation state | | | | | | | | nitrogen | | | | | | | | | | hydrogen | | | | | | | | | | oxygen | | | | | | | | | | (iii) Explain in ter BF ₃ , have diffe | | mmonia, NH_3 , and boron trifle | uoride, | <i>(b)</i> | A significant amount of ammonia is also used as a general purpose cleaner for many household surfaces. | |------------|--| | | Household ammonia is an alkaline solution formed by mixing ammonia with water. | $$NH_3(g) + H_2O(l) \longrightarrow NH_4^+(aq) + OH^-(aq)$$ | (i) | The ammonium term. | ion shows | s coordinate | bonding. | Explain | what is | meant | by this [1] | |-----|--------------------|-----------|--------------|----------|---------|---------|-------|-------------| | | | | | | | | | | (ii) Using outer electrons only, draw a dot and cross diagram to show the bonding in an ammonium ion. Include the charge on the ion. [2] - (iii) State the shape of an ammonium ion and the bond angle present. [2] Shape Bond angle - (iv) Another compound that contains ammonium ions is ammonium chloride, NH_4Cl . Like sodium chloride it is an ionic compound. Explain why it is soluble in water. [2] You may use a diagram in your answer. Total [14] | (a) | | ne first experiment, he ignites potassium and puts it in a gas jar containing oxygeorm potassium oxide. | |------------|-------|--| | | (i) | State what he would see as the reaction proceeds. | | | (ii) | Write a balanced equation for the reaction. | | | (iii) | He repeats the experiment with rubidium. State whether you would expect rubidium to be more reactive or less reactive than potassium. Give a reason for your answer. | | <i>(b)</i> | In th | ne second experiment, Dr Ballard reacts sodium with water at room temperature. $2\text{Na(s)} + 2\text{H}_2\text{O(l)} \longrightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$ | | | (i) | If the mass of sodium is 0.098 g, calculate the number of moles of sodium used the experiment. | | | (ii) | Calculate the volume of hydrogen produced in this reaction at room temperature (1 mole of gas occupies 24.0 dm ³ at room temperature) | | | (iii) | If the volume of water used was 200 cm ³ calculate the concentration, in moldm ⁻³ , of the sodium hydroxide solution formed. | | °801°C.
m chloride. | [1] | |------------------------|-----------------------| | n chloride. | [1] | | | | | erature is high. | [2] | | | | | | | | Total | [14] | | | Total Section B Total | # Rough Work | |
 | | | |-----------|------|------|--| | | | | | | | | | | | |
 | | | | |
 | | | | |
 |
 | | | | | | | | | |
 |
 (1092-01) |
 |
 | | GCE AS/A level **CHEMISTRY CH2 DATA SHEET** P.M. FRIDAY, 27 May 2011 # Infrared Spectroscopy characteristic absorption values | Bond | Wavenumber/cm ⁻¹ | |--------------|-----------------------------| | C—Br | 500 to 600 | | C—Cl | 650 to 800 | | С—О | 1000 to 1300 | | C = C | 1620 to 1670 | | C=O | 1650 to 1750 | | $C \equiv N$ | 2100 to 2250 | | С—Н | 2800 to 3100 | | О—Н | 2500 to 3550 | | N—H | 3300 to 3500 | # THE PERIODIC TABLE | | | | | | | | | THE LEWISDIC | | | -1 | | | | | | | | |------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|--------------------------------|-------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|---|--|---------------------------|-----------------------------|--------------------------------|-----------------------------|---------------------------| | | 1 | 7 | | | | | | 5 | Group | | | | e | 4 | w | 9 | 7 | 0 | | Period | s Block | ock | | | | | | | | | | | | | | | L | | | V — | | | | | | | | | Key | | | | | | | | | 4.00
He | | _ | 101
H | | | | | | | | , | | | | | | | | | Helium
2 | | | Hydrogen
1 | | | | | | | A _r | relative atomic | ive | | , , | | | p Block | ock | - | | | 7 | 6.94 Li Lithium 3 | 9.01 Be Beryllium | | | | | | Symbol
Name
Z | | | | | 10.8
B
Boron
5 | 12.0
C
Carbon
6 | 14.0 Nitrogen | 16.0
O
Oxygen
8 | 19.0
F
Fluorine | 20.2
Neon | | В | 23.0 Na Sodium | 24.3
Mg
Magnesium | | | | | d Block | ock | | | | | 27.0
Al
Aluminium
13 | Silicon | 31.0 P | 32.1
S
Sulfur
16 | 35.5
CI
Chlorine | 40.0
Ar
Argon
18 | | 4 | 39.1 K Potassium | 40.1 Ca Calcium | 45.0
Sc
Scandium | 47.9 Ti Titanium | 50.9
V
Vanadium
23 | 52.0
Cr
Chromium | 54.9
Mn
Manganese | 55.8
Fe
Iron | 58.9
Co
Cobalt | S8.7
Nickel | 63.5
Cu
Copper | 65.4
Zn
Zinc | Е | 72.6 Germanium | 74.9 As Arsenic | 79.0 Se Selenium | 79.9 Bromine | 83.8
Kr
Krypton | | v | 85.5 Rb Rubidium | 87.6 Sr
Strontium | 88.9
Y
Yttrium
39 | 91.2 Zr Zirconium | ш | 95.9
Mo
Molybdenum
42 | Tech | Ruthenium | Rhodium 45 | 106
Pd
Palladium
46 | Ag
Silver | 112
Cd
Cadmium
48 | Information Inform | Sn
Tin
50 | Sb
Antimony
51 | 128
Te
Tellurium | 127
I
Iodine
53 | Xe Xenon 54 | | 9 | 133
Cs
Caesium
55 | 137 Ba Barium 56 | 139 La Lanthanum | Hf
Hafmium | 181
Ta
Tantalum | 184
W
Tungsten | 186
Re
Rhenium | 190
Os
Osmium
76 | 192
Ir
Iridium | 195
Pt
Platinum
78 | 197
Au
Gold | 201
Hg
Mercury
80 | 204
T1
Thallium
81 | 207
Pb
Lead
82 | 209 Bismuth 83 | (210) Po Polonium 84 | (210) At Astatine 85 | (222) Radon 86 | | | (223) Fr Francium 87 | (226) Ra Radium 88 | (227) Ac Actinium 89 | ' | | | | | | | f Bl | f Block | | | | | | | | | | | ►Lar
ele | ► Lanthanoid elements | 140
Ce
Cerium
58 | 141 | Neodymium 60 | (147) Pm Promethium 61 | Sm
Samarium
62 | (153)
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159
Tb
Terbium
65 | 163
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | 173
Yb
Ytterbium
70 | 175
Lu
Lutetium
71 | | | | | ► Actinoid elements | Actinoid elements | Th
Thorium | Pa
Protactinium | 238
U
Uranium
92 | (237) Np Neptunium 93 | Pu
Putonium | (243) Am Americium 95 | (247)
Cm
Curium
96 | (245) Bk Berkelium 97 | (251) (254) Cf Es Californium Einsteinium 98 99 | (254)
Es
Einsteinium
99 | (253)
Fm
Fermium | (256) Md Mendelevium 101 | (254)
No
Nobelium
102 | (257) Lr Lawrencium 103 | |